Subtle stratification confounds estimates of heritability from rare variants

Author:

Bhatia Gaurav,Gusev Alexander,Loh Po-Ru,Finucane Hilary,Vilhjálmsson Bjarni J.,Ripke Stephan,Purcell Shaun,Stahl Eli,Daly Mark,de Candia Teresa R,Lee Sang Hong,Neale Benjamin M,Keller Matthew C.,Zaitlen Noah A.,Pasaniuc Bogdan,Patterson Nick,Yang Jian,Price Alkes L.,

Abstract

AbstractGenome-wide significant associations generally explain only a small proportion of the narrow-sense heritability of complex disease (h2). While considerably more heritability is explained by all genotyped SNPs (hg2), for most traits, much heritability remains missing (hg2 < h2). Rare variants, poorly tagged by genotyped SNPs, are a major potential source of the gap between hg2 and h2. Recent efforts to assess the contribution of both sequenced and imputed rare variants to phenotypes suggest that substantial heritability may lie in these variants. Here we analyze sequenced SNPs, imputed SNPs and haploSNPs— haplotype variants constructed from within a sample, without using a reference panel— and show that studies of heritability from these variants may be strongly confounded by subtle population stratification. For example, when meta-analyzing heritability estimates from 22 randomly ascertained case-control traits from the GERA cohort, we observe a statistically significant increase in heritability explained by imputed SNPs even after correcting for principal components (PCs) from genotyped (or imputed) SNPs. However, this increase is eliminated when correcting for stratification using PCs from a larger number of haploSNPs. We note that subtle stratification may also impact estimates of heritability from array SNPs, although we find that this is generally a less severe problem. Overall, our results suggest that estimating the heritability explained by rare variants for case-control traits requires exquisite control for population stratification, but current methods may not provide this level of control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3