Partitioning gene-level contributions to complex-trait heritability by allele frequency identifies disease-relevant genes

Author:

Burch Kathryn S.ORCID,Hou KangchengORCID,Ding Yi,Wang Yifei,Gazal StevenORCID,Shi HuwenboORCID,Pasaniuc BogdanORCID

Abstract

AbstractRecent works have shown that SNP-heritability—which is dominated by low-effect common variants—may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene (genelevel heritability). We partition gene-level heritability across minor allele frequency (MAF) classes to find genes whose gene-level heritability is explained exclusively by “low-frequency/rare” variants (0.5% ≤ MAF < 1%). Applying our method to ~17K protein-coding genes and 25 quantitative traits in the UK Biobank (N=290K), we find that, on average across traits, ~2.5% of nonzero-heritability genes have a rare-variant component, and only ~0.8% (370 gene-trait pairs) have heritability exclusively from rare variants. Of these 370 gene-trait pairs, 37% were not detected by existing gene-level association testing methods, likely because existing methods combine signal from all variants in a region irrespective of MAF class. Many of the additional genes we identify are implicated in phenotypically related Mendelian disorders or congenital developmental disorders, providing further evidence of their trait-relevance. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. We conclude that the proportion of gene-level heritability attributable to low-frequency/rare variation can yield novel insights into complex-trait genetic architecture.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3