A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

Author:

Collins Zachary M.,Ishimatsu Kana,Tsai Tony Y.C.,Megason Sean G.ORCID

Abstract

AbstractTo enable robust patterning, morphogen systems should be resistant to variations in gene expression and tissue size. Here we explore how a Shh morphogen gradient in the ventral neural tube enables proportional patterning in embryos of varying sizes. Using a surgical technique to reduce the size of zebrafish embryos and quantitative confocal microscopy, we find that patterning of neural progenitors remains proportional after size reduction. Intriguingly, a protein necessary for Shh release, Scube2, is expressed far from the source of sonic hedgehog production. scube2 expression levels control Shh signaling extent during ventral neural patterning and conversely Shh signaling represses the expression of scube2, thereby restricting its own signaling. scube2 is disproportionately downregulated in size-reduced embryos, providing a potential mechanism for size-dependent regulation of Shh. This regulatory feedback is necessary for pattern scaling, as demonstrated by a loss of scaling in scube2 overexpressing embryos. In a manner akin to the expander-repressor model of morphogen scaling, we conclude that feedback between Shh signaling and scube2 expression enables proportional patterning in the ventral neural tube by encoding a tissue size dependent morphogen signaling gradient.Summary StatementThe Shh morphogen gradient can scale to different size tissues by feedback between Scube2 mediated release of Shh and Shh based inhibition of Scube2 expressionAuthor ContributionsZ.M.C. conducted experiments and data analysis. Z.M.C and S.G.M. conceived the study, designed the experiments, and wrote the paper. K.I and Z.M.C. developed the size reduction technique. T.Y.C.T helped develop the image analysis technique and generated the tg(shha:memCherry) reporter line. S.G.M. supervised the overall study.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3