Scaling morphogen gradients during tissue growth by a cell division rule

Author:

Averbukh Inna1,Ben-Zvi Danny2,Mishra Siddhartha34,Barkai Naama1

Affiliation:

1. Department of Molecular genetics, Weizmann Institute of Science, Rehovot 76100, Israel

2. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA

3. Center of Mathematics for Applications, University of Oslo, 0316 Oslo, Norway

4. Seminar for Applied Mathematics ETH, Zurich 8092, Switzerland

Abstract

Morphogen gradients guide the patterning of tissues and organs during the development of multicellular organisms. In many cases, morphogen signaling is also required for tissue growth. The consequences of this interplay between growth and patterning are not well understood. In the Drosophila wing imaginal disc, the morphogen Dpp guides patterning and is also required for tissue growth. In particular, it was recently reported that cell division in the disc correlates with the temporal increase in Dpp signaling. Here we mathematically model morphogen gradient formation in a growing tissue, accounting also for morphogen advection and dilution. Our analysis defines a new scaling mechanism, which we term the morphogen-dependent division rule (MDDR): when cell division depends on the temporal increase in morphogen signaling, the morphogen gradient scales with the growing tissue size, tissue growth becomes spatially uniform and the tissue naturally attains a finite size. This model is consistent with many properties of the wing disc. However, we find that the MDDR is not consistent with the phenotype of scaling-defective mutants, supporting the view that temporal increase in Dpp signaling is not the driver of cell division during late phases of disc development. More generally, our results show that local coupling of cell division with morphogen signaling can lead to gradient scaling and uniform growth even in the absence of global feedbacks. The MDDR scaling mechanism might be particularly beneficial during rapid proliferation, when global feedbacks are hard to implement.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3