Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models

Author:

Mollinari MarceloORCID,Garcia Antonio Augusto FrancoORCID

Abstract

AbstractModern SNP genotyping technologies allow to measure the relative abundance of different alleles for a given locus and consequently to estimate their allele dosage, opening a new road for genetic studies in autopolyploids. Despite advances in genetic linkage analysis in autotetraploids, there is a lack of statistical models to perform linkage analysis in organisms with higher ploidy levels. In this paper, we present a statistical method to estimate recombination fractions and infer linkage phases in full-sib populations of autopolyploid species with even ploidy levels in a sequence of SNP markers using hidden Markov models. Our method uses efficient two-point procedures to reduce the search space for the best linkage phase configuration and reestimate the final parameters using the maximum-likelihood of the Markov chain. To evaluate the method, and demonstrate its properties, we rely on simulations of autotetraploid, autohexaploid and autooctaploid populations and on a real tetraploid potato data set. The results demonstrate the reliability of our approach, including situations with complex linkage phase scenarios in hexaploid and octaploid populations.Author summaryIn this paper, we present a complete multilocus solution based on hidden Markov models to estimate recombination fractions and infer the linkage phase configuration in full-sib mapping populations with even ploidy levels under random chromosome segregation. We also present an efficient pairwise loci analysis to be used in cases were the multilocus analysis becomes compute-intensive.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3