Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane

Author:

Olatoye Marcus O.,Clark Lindsay V.,Wang Jianping,Yang Xiping,Yamada Toshihiko,Sacks Erik J.,Lipka Alexander E.ORCID

Abstract

AbstractAlthough energycane (Saccharum spp. hybrids) is widely used as a source of lignocellulosic biomass for bioethanol, breeding this crop for disease resistance is challenging due to its narrow genetic base. Therefore, efforts are underway to introgress novel sources of genetic resistance from Miscanthus into energycane. Given that disease resistance in energycane could be either qualitative or quantitative in nature, careful examination of a wide variety of genomic-enabled breeding approaches will be crucial to the success of such an undertaking. Here we examined the efficiency of both genomic selection (GS) and marker-assisted selection (MAS) for traits simulated under different genetic architectures in F1 and BC1 populations of Miscanthus × Miscanthus and sugarcane × sugarcane crosses. We observed that the performance of MAS was comparable and sometimes superior to GS for traits simulated with four quantitative trait nucleotides (QTNs). In contrast, as the number of simulated QTN increased, all four GS models that were evaluated tended to outperform MAS, select more phenotypically optimal F1 individuals, and accurately predict simulated trait values in subsequent BC1 generations. We therefore conclude that GS is preferable to MAS for introgressing genetic sources of horizontal disease resistance from Miscanthus to energycane, while MAS remains a suitable option for introgressing vertical disease resistance.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3