A schizophrenia risk gene, NRGN, bidirectionally modulates synaptic plasticity via regulating the neuronal phosphoproteome

Author:

Hwang Hongik,Szucs Matthew J.,Ding Lei J.,Allen Andrew,Haensgen Henny,Gao Fan,Andrade Arturo,Pan Jennifer Q.,Carr Steven A.,Ahmad Rushdy,Xu WeifengORCID

Abstract

AbstractNRGN is a schizophrenia risk gene identified in recent genetic studies, encoding a small neuronal protein, neurogranin (Ng). Individuals carrying a risk variant of NRGN showed decreased hippocampal activation during contextual fear conditioning. Furthermore, the expression of Ng was reduced in the post-mortem brains of schizophrenic patients. Using the mouse model, we found that the translation of Ng in hippocampus is rapidly increased in response to novel context exposure, and this up-regulation is required for encoding contextual memory. The extent and degree of the effect that altered Ng expression has on neuronal cellular functions are largely unknown. Here, we found that Ng bidirectionally regulates synaptic plasticity in the hippocampus. Elevated Ng levels facilitated long-term potentiation (LTP), whereas decreased Ng levels impaired LTP. Quantitative phosphoproteomic analysis revealed that decreasing Ng caused a significant shift in the phosphorylation status of postsynaptic density proteins, highlighting clusters of schizophrenia- and autism-related genes. In particular, decreasing Ng led to the hypo-phosphorylation of NMDAR subunit Grin2A at newly identified sites, resulting in accelerated decay of NMDAR-mediated channel currents. blocking protein phosphatase PP2B activity rescued the accelerated synaptic NMDAR current decay and the impairment of LTP caused by decreased Ng levels, suggesting that enhanced synaptic PP2B activity led to the deficits. Taken together, our work suggests that altered Ng levels under pathological conditions affect the phosphorylation status of neuronal proteins by tuning PP2B activity and thus the induction of synaptic plasticity, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3