Abstract
Abstract
Background
Identifying the causal genes at the risk loci and elucidating their roles in schizophrenia (SCZ) pathogenesis remain significant challenges. To explore risk variants associated with gene expression in the human brain and to identify genes whose expression change may contribute to the susceptibility of SCZ, here we report a comprehensive integrative study on SCZ.
Methods
We systematically integrated the genetic associations from a large-scale SCZ GWAS (N = 56,418) and brain expression quantitative trait loci (eQTL) data (N = 175) using a Bayesian statistical framework (Sherlock) and Summary data-based Mendelian Randomization (SMR). We also measured brain structure of 86 first-episode antipsychotic-naive schizophrenia patients and 152 healthy controls with the structural MRI.
Results
Both Sherlock (P = 3. 38 × 10−6) and SMR (P = 1. 90 × 10−8) analyses showed that TYW5 mRNA expression was significantly associated with risk of SCZ. Brain-based studies also identified a significant association between TYW5 protein abundance and SCZ. The single-nucleotide polymorphism rs203772 showed significant association with SCZ and the risk allele is associated with higher transcriptional level of TYW5 in the prefrontal cortex. We further found that TYW5 was significantly upregulated in the brain tissues of SCZ cases compared with controls. In addition, TYW5 expression was also significantly higher in neurons induced from pluripotent stem cells of schizophrenia cases compared with controls. Finally, combining analysis of genotyping and MRI data showed that rs203772 was significantly associated with gray matter volume of the right middle frontal gyrus and left precuneus.
Conclusions
We confirmed that TYW5 is a risk gene for SCZ. Our results provide useful information toward a better understanding of the genetic mechanism of TYW5 in risk of SCZ.
Publisher
Springer Science and Business Media LLC
Reference98 articles.
1. Jiang W, King TZ, Turner JA. Imaging genetics towards a refined diagnosis of schizophrenia. Front Psych. 2019;10:494.
2. Rössler W, Salize HJ, van Os J, Riecher-Rössler A. Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol. 2005;15(4):399–409.
3. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE, et al. Schizophrenia: manifestations, incidence and course in different cultures A World Health Organization Ten-Country Study. Psychol Med Monogr Suppl. 2009;20:1–97.
4. Keshavan MS, Nasrallah HA, Tandon R. Schizophrenia, “Just the Facts” 6. Moving ahead with the schizophrenia concept: from the elephant to the mouse. Schizophr Res. 2011;127(1-3):3–13.
5. Bearden CE, Meyer SE, Loewy RL, Niendam TA, Cannon TD. The neurodevelopmental model of schizophrenia: updated. In: Developmental Psychopathology; 2015. p. 542–69.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献