Acoustic contamination of electrophysiological brain signals during speech production and sound perception

Author:

Roussel Philémon,Godais Gaël Le,Bocquelet Florent,Palma Marie,Hongjie Jiang,Zhang Shaomin,Kahane Philippe,Chabardès Stéphan,Yvert Blaise

Abstract

AbstractA current challenge of neurotechnologies is the development of speech brain-computer interfaces to restore communication in people unable to speak. To achieve a proof of concept of such system, neural activity of patients implanted for clinical reasons can be recorded while they speak. Using such simultaneously recorded audio and neural data, decoders can be built to predict speech features using features extracted from brain signals. A typical neural feature is the spectral power of field potentials in the high-gamma frequency band (between 70 and 200 Hz), a range that happens to overlap the fundamental frequency of speech. Here, we analyzed human electrocorticographic (ECoG) and intracortical recordings during speech production and perception as well as rat microelectrocorticographic (µ-ECoG) recordings during sound perception. We observed that electrophysiological signals, recorded with different recording setups, often contain spectrotemporal features highly correlated with those of the sound, especially within the high-gamma band. The characteristics of these correlated spectrotemporal features support a contamination of electrophysiological recordings by sound. In a recording showing high contamination, using neural features within the high-gamma frequency band dramatically increased the performance of linear decoding of acoustic speech features, while such improvement was very limited for another recording showing weak contamination. Further analysis and in vitro replication suggest that the contamination is caused by a mechanical action of the sound waves onto the cables and connectors along the recording chain, transforming sound vibrations into an undesired electrical noise that contaminates the biopotential measurements. This study does not question the existence of relevant physiological neural information underlying speech production or sound perception in the high-gamma frequency band, but alerts on the fact that care should be taken to evaluate and eliminate any possible acoustic contamination of neural signals in order to investigate the cortical dynamics of these processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3