Speech decoding from a small set of spatially segregated minimally invasive intracranial EEG electrodes with a compact and interpretable neural network

Author:

Petrosyan Artur,Voskoboinikov Alexey,Sukhinin Dmitrii,Makarova Anna,Skalnaya Anastasia,Arkhipova Nastasia,Sinkin MikhailORCID,Ossadtchi AlexeiORCID

Abstract

Abstract Objective. Speech decoding, one of the most intriguing brain-computer interface applications, opens up plentiful opportunities from rehabilitation of patients to direct and seamless communication between human species. Typical solutions rely on invasive recordings with a large number of distributed electrodes implanted through craniotomy. Here we explored the possibility of creating speech prosthesis in a minimally invasive setting with a small number of spatially segregated intracranial electrodes. Approach. We collected one hour of data (from two sessions) in two patients implanted with invasive electrodes. We then used only the contacts that pertained to a single stereotactic electroencephalographic (sEEG) shaft or an electrocorticographic (ECoG) stripe to decode neural activity into 26 words and one silence class. We employed a compact convolutional network-based architecture whose spatial and temporal filter weights allow for a physiologically plausible interpretation. Main results. We achieved on average 55% accuracy using only six channels of data recorded with a single minimally invasive sEEG electrode in the first patient and 70% accuracy using only eight channels of data recorded for a single ECoG strip in the second patient in classifying 26+1 overtly pronounced words. Our compact architecture did not require the use of pre-engineered features, learned fast and resulted in a stable, interpretable and physiologically meaningful decision rule successfully operating over a contiguous dataset collected during a different time interval than that used for training. Spatial characteristics of the pivotal neuronal populations corroborate with active and passive speech mapping results and exhibit the inverse space-frequency relationship characteristic of neural activity. Compared to other architectures our compact solution performed on par or better than those recently featured in neural speech decoding literature. Significance. We showcase the possibility of building a speech prosthesis with a small number of electrodes and based on a compact feature engineering free decoder derived from a small amount of training data.

Funder

the Center for Bioelectric Interfaces NRU HSE, RF Government

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3