Comparing Variant Call Files for Performance Benchmarking of Next-Generation Sequencing Variant Calling Pipelines

Author:

Cleary John G.,Braithwaite Ross,Gaastra Kurt,Hilbush Brian S,Inglis Stuart,Irvine Sean A,Jackson Alan,Littin Richard,Rathod Mehul,Ware David,Zook Justin M.,Trigg Len,De La Vega Francisco M.ORCID

Abstract

To evaluate and compare the performance of variant calling methods and their confidence scores, comparisons between a test call set and a ?gold standard? need to be carried out. Unfortunately, these comparisons are not straightforward with the current Variant Call Files (VCF), which are the standard output of most variant calling algorithms for high-throughput sequencing data. Comparisons of VCFs are often confounded by the different representations of indels, MNPs, and combinations thereof with SNVs in complex regions of the genome, resulting in misleading results. A variant caller is inherently a classification method designed to score putative variants with confidence scores that could permit controlling the rate of false positives (FP) or false negatives (FN) for a given application. Receiver operator curves (ROC) and the area under the ROC (AUC) are efficient metrics to evaluate a test call set versus a gold standard. However, in the case of VCF data this also requires a special accounting to deal with discrepant representations. We developed a novel algorithm for comparing variant call sets that deals with complex call representation discrepancies and through a dynamic programing method that minimizes false positives and negatives globally across the entire call sets for accurate performance evaluation of VCFs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3