A Novel Approach for Accurate Sequence Assembly Using de Bruijn graphs

Author:

Prybol Cameron J.ORCID,Hammack Aeron T.ORCID,Ashley Euan A.ORCID,Snyder Michael P.ORCID

Abstract

AbstractSequence assembly methods are valuable for reconstructing genomes from shorter read fragments. Modern nucleic acid sequencing instruments produce quality scores associated with each reported base; however, these quality scores are not generally used as a core part of sequence assembly or alignment algorithms. Here, we leverage weighted de Bruijn graphs as graphical probability models representing the relative abundances and qualities of kmers within FASTQ-encoded observations. We then utilize these weighted de Bruijn graphs to identify alternate, higher-likelihood candidate sequences compared to the original observations, which are known to contain errors. By improving the original observations with these resampled paths, iteratively across increasing k-lengths, we can use this expectation-maximization approach to “polish” read sets from any sequencing technology according to the mutual information shared in the reads. We use this polishing approach to probabilistically correct simulated short- and long-read datasets of lower coverages and higher error rates than some algorithms can produce satisfactory assemblies for. We find that this approach corrects sequencing errors at rates that are able to produce error-free and nearly-error-free de Bruijn assembly graphs for simulated read-set challenges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3