The genetic robustness of RNA and protein from evolutionary, structural and functional perspectives

Author:

Coray Dorien S.,Sibaeva Nellie,McGimpsey Stephanie,Gardner Paul P.ORCID

Abstract

AbstractThe reactions of functional molecules like proteins and RNAs to mutation affect both host cell viability and biomolecular evolution. These molecules are considered robust if function is maintained despite mutations. Proteins and RNAs have different structural and functional characteristics that affect their robustness, and to date, comparisons between them have been theoretical. In this work, we test the relative mutational robustness of RNA and protein pairs using three approaches: evolutionary, structural, and functional. We compare the nucleotide diversities of functional RNAs with those of matched proteins. Across different levels of conservation, we found the nucleotide-level variations between the biomolecules largely overlapped, with proteins generally supporting more variation than matched RNAs. We then directly tested the robustness of the protein and RNA pairs with in vitro and in silico mutagenesis of their respective genes. The in silico experiments showed that proteins and RNAs reacted similarly to point mutations and insertions or deletions, yet proteins are slightly more robust on average than RNAs. In vitro, mutated fluorescent RNAs retained greater levels of function than the proteins. Overall this suggests that proteins and RNAs have remarkably similar degrees of robustness, with the average protein having moderately higher robustness than RNA as a group.Significance StatementThe ability of proteins and non-coding RNAs to maintain function despite mutations in their respective genes is known as mutational robustness. Robustness impacts how molecules maintain and change phenotypes, which has a bearing on the evolution and the origin of life as well as influencing modern biotechnology. Both protein and RNA have mechanisms that allow them to absorb DNA-level changes. Proteins have a redundant genetic code and non-coding RNAs can maintain structure and function through flexible base-pairing possibilities. The few theoretical treatments comparing protein and RNA robustness differ in their conclusions. In this experimental comparison of protein and RNA, we find that they have remarkably similar degrees of overall genetic robustness.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alternative Reading Frames are an Underappreciated Source of Protein Sequence Novelty;Journal of Molecular Evolution;2023-06-16

2. Insertions and deletions in the RNA sequence–structure map;Journal of The Royal Society Interface;2021-10

3. Frameshifting preserves key physicochemical properties of proteins;Proceedings of the National Academy of Sciences;2020-03-03

4. Invariants of Frameshifted Variants;2019-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3