Regulatory plasticity within a complex cytokine-sensing mammary enhancer during lactation

Author:

Lee Hye KyungORCID,Liu ChengyuORCID,Hennighausen LotharORCID

Abstract

AbstractEnhancers are transcription factor platforms that synergize with promoters to activate gene expression up to several-thousand-fold. While genome-wide structural studies are used to predict enhancers, the in vivo significance is less clear. Specifically, the biological importance of individual transcription factors within enhancer complexes remains to be understood. Here we investigate the structural and biological importance of individual transcription factor binding sites and redundancy among transcription components within a complex enhancer in vivo. The Csn1s2b gene is expressed exclusively in mammary tissue and activated several thousand-fold during pregnancy and lactation. Using ChIP-seq we identified a complex lactation-specific candidate enhancer that binds multiple transcription factors and coincides with activating histone marks. Using experimental mouse genetics, we determined that deletion of canonical binding motifs for the transcription factors NFIB and STAT5, individually and combined, had a limited biological impact. Loss of these sites led to a shift of transcription factor binding to juxtaposed sites, suggesting exceptional plasticity that does not require direct protein-DNA interactions. Additional deletions revealed the critical importance of a non-canonical STAT5 binding site for enhancer activity. Our data also suggest that enhancer RNAs are not required for the activity of this specific enhancer. While ChIP-seq experiments predicted an additional candidate intronic enhancer, its deletion did not adversely affect gene expression, emphasizing the limited biological information provided by structural data. Our study provides comprehensive insight into the anatomy and biology of a composite mammary enhancer that activates its target gene several hundred-fold during lactation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3