Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise

Author:

Vincent FloraORCID,Sheyn Uri,Porat ZivORCID,Vardi AssafORCID

Abstract

SummaryMarine viruses are considered as major evolutionary and biogeochemical drivers of microbial life, through metabolic reprogramming of their host and cell lysis that modulates nutrient cycling1, primary production and carbon export in the oceans2. Despite the fact that viruses are the most abundant biological entities in the marine environment, we still lack mechanistic and quantitative approaches to assess their impact on the marine food webs. Here, we provide the first quantification of active viral infection, during bloom succession of the cosmopolitan coccolithophore Emiliania huxleyi, by subcellular visualization of both virus and host transcripts on a single cell resolution across thousands of cells. Using this novel method, that we coined Virocell-FISH, we revealed that distinct transcriptional states co-exist during the infection dynamics, and that viral infection reached only a quarter of the E. huxleyi population although the bloom demised in a synchronized manner. Through a detailed laboratory time-course infection of E. huxleyi by its lytic large virus EhV, we quantitatively show that metabolically active infected cells chronically release viral particles, and that viral-induced lysis is not systematically accompanied by virion increase, thus challenging major assumptions regarding the life cycle of giant lytic viruses. Using Virocell-FISH, we could further assess in a new resolution, the level of viral infection in cell aggregates, a key ecosystem process that can facilitate carbon export to the deep ocean3. We project that our approach can be applied to diverse marine microbial systems, opening a mechanistic dimension to the study of host-pathogen interactions in the ocean.One Sentence SummaryQuantifying active viral infection in algal blooms

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3