Author:
MacDonald Donald Iain,Sikandar Shafaq,Weiss Jan,Pyrski Martina,Luiz Ana P.,Millet Queensta,Emery Edward C.,Mancini Flavia,Iannetti Gian D.,Alles Sascha R.A.,Zhao Jing,Cox James J,Brownstone Robert M.,Zufall Frank,Wood John N.
Abstract
SummaryDeletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain suggesting the locus of analgesia is the nociceptor. Here we demonstrate that NaV1.7 knockout mice have essentially normal nociceptor activity using in vivo calcium imaging and extracellular recording. However, glutamate and substance P release from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also substantially reversed by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid-independent. Male and female humans with NaV1.7 null mutations show naloxone reversible analgesia. Thus opioid-dependent inhibition of neurotransmitter release is the principal mechanism of NaV1.7 null analgesia in mice and humans.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献