Competitive exclusion strengthens selection for transmissibility and increases the benefit of recombination for within-host adaptation

Author:

Jacobs Nathan T.ORCID,Weiser Jeffrey N.ORCID

Abstract

AbstractPathogens experience selection at multiple scales, given the need to transmit between hosts and replicate within them. This presents the challenge of cross-scale selective conflict when adaptations to one scale compromise fitness at another, such as mutations that improve transmissibility but make individuals less competitive within hosts. Selection operates differently at these scales, with tight transmission bottlenecks subjecting pathogen populations to genetic drift, and large population sizes within hosts enabling efficient selection for beneficial mutations. Compounding the reduction in diversity by transmission bottlenecks is the occupant-intruder competitive strategy exhibited by some pathogens, where the first variant to colonize a host prevents later arriving variants from contributing to infection, preventing immigration and turning transmission into a “founder takes all” contest. Here, we used multiple modeling approaches to examine how this behavior affects the efficiency of selection for both transmissibility and within- host fitness. We find that in the face of a trade-off, selection for transmissibility is maximized under a tight transmission bottleneck that minimizes within-host competition during colonization. While mutations with increased within-host fitness are favored during within-host replication, an occupant-intruder strategy prevents these mutants from displacing established residents and propagating across the host population, leading to their extinction if they are insufficiently transmissible. Finally, a model of competition on the scale of the host population revealed that competitive exclusion limits the propagation of mutations with improved within-host fitness, unless resident populations can incorporate alleles from intruding variants by recombination. Thus, competitive exclusion may facilitate the improvement and maintenance of pathogen transmissibility, with directional recombination allowing resident populations to mitigate the potential loss of within-host fitness imposed by this occupant-intruder strategy.Author SummaryTransmission is a defining feature of infectious diseases, and so a better understanding of how transmissibility evolves is important for improving disease surveillance and prevention. Successful transmission is often achieved by a small number of individuals which, after establishing residency in a host, may prevent newcomers from participating in infection. Here, we use modeling to examine how competitive exclusion of challengers by resident populations affects the balance between within-host competitive ability and transmissibility. We find that competitive exclusion strengthens selection for transmissibility by disproportionately benefitting the first variant to colonize a host and preventing mutants that may be more competitive but less transmissible from displacing established residents. Competitive exclusion also limits the propagation of mutants that improve within-host fitness without reducing transmissibility, however, increasing the advantage of recombination that allows resident populations to acquire beneficial alleles from challengers. Competitive strategies that allow pathogens to “claim ownership” of hosts may thus help pathogen populations maintain transmissibility, with genetic recombination facilitating within-host adaptation through the incorporation of beneficial alleles from challengers.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3