Intracranial self-stimulation and concomitant behaviors following systemic methamphetamine administration in Hnrnph1 mutant mice

Author:

Borrelli Kristyn N.ORCID,Langan Carly R.,Dubinsky Kyra R.,Szumlinski Karen K.ORCID,Carlezon William A.,Chartoff Elena H.ORCID,Bryant Camron D.ORCID

Abstract

ABSTRACTRationaleAddiction to methamphetamine (MA) is a major public health issue in the United States. While psychostimulant use disorders are heritable, their genetic basis remains poorly understood. We previously identified heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1; H1) as a quantitative trait gene underlying sensitivity to MA-induced locomotor activity. Mice heterozygous for a frameshift deletion in the first coding exon of H1 (H1+/-) showed reduced MA phenotypes including oral self-administration, locomotor activity, dopamine release, and dose-dependent differences in MA conditioned place preference. However, the effects of H1+/- on innate and MA-modulated reward sensitivity are not known.ObjectivesWe examined innate reward sensitivity and modulation by MA in H1+/- mice via intracranial self-stimulation (ICSS).MethodsWe used intracranial self-stimulation (ICSS) of the medial forebrain bundle to assess shifts in reward sensitivity following acute, ascending doses of MA (0.5-4.0 mg/kg, i.p.) using a within-subjects design. We also assessed video-recorded behaviors during ICSS testing sessions.ResultsH1+/- mice displayed reduced normalized maximum response rates, H1+/- females showed lower normalized M50 values compared to wild-type females following MA, and H1+/- influenced ICSS responding relative to maximum baseline rates. There was a dose-dependent reduction in distance to the response wheel following MA administration, providing an additional measure of reward-related behavior.ConclusionsH1+/- mice displayed reduced reward facilitation following MA in a sex- and dose-dependent manner. This result expands upon the set of MA-induced phenotypes observed in H1+/- mice.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3