Single Cell-type Integrative Network Modeling Identified Novel Microglial-specific Targets for the Phagosome in Alzheimer’s disease

Author:

Patel Kruti Rajan,Zhu Kuixi,Henrion Marc Y.R.,Beckmann Noam D.,Moein Sara,Alamprese Melissa L.,Allen Mariet,Wang Xue,Chan Gail,Pertel Thomas,Nejad Parham,Reddy Joseph S.ORCID,Carrasquillo Minerva M.,Bennett David A,Ertekin-Taner Nilüfer,De Jager Philip L.,Schadt Eric E.,Bradshaw Elizabeth M.,Chang Rui

Abstract

SummaryLate-Onset Alzheimer’s Disease (LOAD) results from a complex pathological process influenced by genetic variation, aging and environment factors. Genetic susceptibility factors indicate that myeloid cells such as microglia play a significant role in the onset of LOAD. Here, we developed a computational systems biology approach to construct probabilistic causal and predictive network models of genetic regulatory programs of microglial cells under LOAD diagnosis by integrating two independent brain transcriptome and genome-wide genotype datasets from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) and Mayo Clinic (MAYO) studies in the AMP-AD consortium. From this network model, we identified and replicated novel microglial-specific master regulators predicted to modulate network states associated with LOAD. We experimentally validated three microglial master regulators (FCER1G, HCK and LAPTM5) in primary human microglia-like cells (MDMi) by demonstrating the molecular impact these master regulators have on modulating downstream genomic targets identified by our top-down/bottom-up method and the causal relations among the three key drivers. These master regulators are involved in phagocytosis, a process associated with LOAD. Thus, we propose three new master regulator (key driver) genes that emerged from our network analyses as robust candidates for further evaluation in LOAD therapeutic development efforts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3