Practical considerations for measuring the effective reproductive number, Rt

Author:

Gostic Katelyn M.ORCID,McGough Lauren,Baskerville Edward B.ORCID,Abbott SamORCID,Joshi Keya,Tedijanto ChristineORCID,Kahn RebeccaORCID,Niehus ReneORCID,Hay JamesORCID,De Salazar Pablo M.,Hellewell JoelORCID,Meakin SophieORCID,Munday James,Bosse Nikos I.,Sherrat Katharine,Thompson Robin N.ORCID,White Laura F.ORCID,Huisman Jana S.ORCID,Scire JérémieORCID,Bonhoeffer SebastianORCID,Stadler TanjaORCID,Wallinga JaccoORCID,Funk SebastianORCID,Lipsitch MarcORCID,Cobey SarahORCID

Abstract

AbstractEstimation of the effective reproductive number, Rt, is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to spread. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.Author summaryThe effective reproductive number, Rt, is a key epidemic parameter used to assess whether an epidemic is growing, shrinking or holding steady. Rt estimates can be used as a near real-time indicator of epidemic growth or to assess the effectiveness of interventions. But due to delays between infection and case observation, estimating Rt in near real-time, and correctly inferring the timing of changes in Rt is challenging. Here, we provide an overview of challenges and best practices for accurate, timely Rt estimation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3