A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin

Author:

Santos Sean M.ORCID,Hartman John L.ORCID

Abstract

AbstractBackgroundSaccharomyces cerevisiae represses respiration in the presence of adequate glucose, mimicking the Warburg effect, termed aerobic glycolysis. We conducted yeast phenomic experiments to characterize differential doxorubicin-gene interaction, in the context of respiration vs. glycolysis. The resulting systems level biology about doxorubicin cytotoxicity, including the influence of the Warburg effect, was integrated with cancer pharmacogenomics data to identify potentially causal correlations between differential gene expression and anti-cancer efficacy.MethodsQuantitative high-throughput cell array phenotyping (Q-HTCP) was used to measure cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library, treated with escalating doxorubicin concentrations in fermentable and non-fermentable media. Doxorubicin-gene interaction was quantified by departure of the observed and expected phenotypes for the doxorubicin-treated mutant strain, with respect to phenotypes for the untreated mutant strain and both the treated and untreated reference strain. Recursive expectation-maximization clustering (REMc) and Gene Ontology-based analyses of interactions were used to identify functional biological modules that buffer doxorubicin cytotoxicity, and to characterize their Warburg-dependence. Yeast phenomic data was applied to cancer cell line pharmacogenomics data to predict differential gene expression that causally influences the anti-tumor efficacy, and potentially the anthracycline-associated host toxicity, of doxorubicin.ResultsDoxorubicin cytotoxicity was greater with respiration, suggesting the Warburg effect can influence therapeutic efficacy. Accordingly, doxorubicin drug-gene interaction was more extensive with respiration, including increased buffering by cellular processes related to chromatin organization, protein folding and modification, translation reinitiation, spermine metabolism, and fatty acid beta-oxidation. Pathway enrichment was less notable for glycolysis-specific buffering. Cellular processes exerting influence relatively independently, with respect to Warburg status, included homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, and actin cortical patch localization. Causality for differential gene expression associated with doxorubicin cytotoxicity in tumor cells was predicted within the biological context of the phenomic model.ConclusionsWarburg status influences the genetic requirements to buffer doxorubicin toxicity. Yeast phenomics provides an experimental platform to model the complexity of gene interaction networks that influence human disease phenotypes, as in this example of chemotherapy response. High-resolution, systems level yeast phenotyping is useful to predict the biological influence of functional variation on disease, offering the potential to fundamentally advance precision medicine.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3