A humanized yeast phenomic model of deoxycytidine kinase to predict genetic buffering of nucleoside analog cytotoxicity

Author:

Santos Sean M.ORCID,Icyuz Mert,Pound Ilya,William Doreen,Guo Jingyu,McKinney Brett A.ORCID,Niederweis MichaelORCID,Rodgers John,Hartman John L.ORCID

Abstract

AbstractKnowledge about synthetic lethality can be applied to enhance the efficacy of anti-cancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug-gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct anti-tumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in theS. cerevisiaegenomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug-gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug-gene interaction specific to cytarabine was less enriched in Gene Ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-GO-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast-human homologs with correlated differential gene expression and drug-efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3