Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics

Author:

Gerhard Stephan,Andrade Ingrid,Fetter Richard D.,Cardona AlbertORCID,Schneider-Mizell Casey M.ORCID

Abstract

AbstractThroughout an animal’s postembryonic development, neuronal circuits must maintain appropriate output even as the body grows. The contribution of structural adaptation — neuronal morphology and synaptic connectivity — to circuit development remains unclear. In a previous paper (Schneider-Mizell et al., 2016), we measured the detailed neuronal morphological structures subserving neuronal connectivity in Drosophila. Here, we examine how neuronal morphology and connectivity change across postembyronic development. Using new and existing serial section electron microscopy volumes, we reconstructed an identified nociceptive circuit in two larvae, one 1st instar and one 3rd instar. We found extremely consistent, topographically-arranged circuit structure. Five-fold increases in size of interneurons were associated with compensatory structural changes that maintained cell-type-specific synaptic input as a fraction of total inputs. An increase in number of synaptic contacts was accompanied with a disproportionate increase in the number of small dendritic terminal branches relative to other neuronal compartments. We propose that these precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a nociceptive stimulus.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Functional diversity of excitatory commissural interneurons in adult zebrash;eLife,2016

2. Cellular mechanisms governing synaptic development inDrosophila melanogaster

3. Tiling of the Drosophila epidermis by multidendritic sensory neurons;Development,2002

4. The Drosophila tumor suppressor gene, dlg, is involved in structural plasticity at a glutamatergic synapse

5. Synapse-specific control of synaptic efficacy at the terminals of a single neuron

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3