Abstract
AbstractAnimals exhibit innate behaviours in response to a variety of sensory stimuli such as olfactory cues. In Drosophila, a higher olfactory centre called the lateral horn (LH) is implicated in innate behaviour. However, our knowledge of the structure and function of the LH is scant, due to the lack of sparse neurogenetic tools for this brain region. Here we generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell-types. We identify the neurotransmitter and axo-dendritic polarity for each cell-type. Using these lines were create an anatomical map of the LH. We found that ∼30% of LH projections converge with outputs from the mushroom body, the site of olfactory learning and memory. Finally, using optogenetic activation of small groups of LH neurons. We identify cell-types that drive changes in either valence or specific motor programs, such as turning and locomotion. In summary we have generated a resource for manipulating and mapping LH neurons in both light and electron microscopy and generated insights into the anatomy and function of the LH.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献