From climate warming to accelerated cellular ageing: an experimental study in wild birds

Author:

Stier AntoineORCID,Hsu Bin-YanORCID,Cossin-Sevrin NinaORCID,Garcin Natacha,Ruuskanen SuviORCID

Abstract

AbstractClimate change is increasing both the average ambient temperature and the frequency and severity of heat waves. While direct mortality induced by heat waves is increasingly reported, sub-lethal effects are also likely to impact wild populations. We hypothesized that accelerated ageing could be a cost of being exposed to higher ambient temperature, especially in early-life when thermoregulatory capacities are not fully developed. We tested this hypothesis in wild great tit (Parus major) by experimentally increasing nest box temperature by ca. 2°C during postnatal growth and measuring telomere length, a biomarker of cellular ageing predictive of survival prospects in many bird species. While increasing early-life temperature does not affect growth or survival to fledging, it accelerates telomere shortening and reduces medium-term survival from 34% to 19%. Heat-induced telomere shortening was not explained by oxidative stress, but more likely by an increase in energy demand (i.e. higher thyroid hormones levels, increased expression of glucocorticoid receptor, increased mitochondrial density) leading to a reduction in telomere maintenance mechanisms (i.e. decrease in the gene expression of telomerase and protective shelterin). Our results thus suggest that climate warming can affect ageing rate in wild birds, with potential impact on population dynamics and persistence.Significance statementStressful environmental conditions are known to accelerate cellular ageing, especially when experienced early in life. One unexplored avenue through which climate warming might affect wild animal populations is accelerated ageing. Here we show that increasing nest temperature by ca. 2°C during postnatal growth in a wild bird species can impact numerous physiological pathways and medium-term survival. Notably, artificially warming nests accelerates the shortening of telomeres, which are the protective end-caps of chromosomes considered as a hallmark of ageing. We thus suggest that warm ambient temperatures might accelerate ageing in wild animals, which can potentially impact population dynamics and extinction risk in the face of climate change.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3