Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century

Author:

Conradie Shannon R.,Woodborne Stephan M.,Cunningham Susan J.,McKechnie Andrew E.ORCID

Abstract

Birds inhabiting hot, arid regions are among the terrestrial organisms most vulnerable to climate change. The potential for increasingly frequent and intense heat waves to cause lethal dehydration and hyperthermia is well documented, but the consequences of sublethal fitness costs associated with chronic exposure to sustained hot weather remain unclear. Using data for species occurring in southern Africa’s Kalahari Desert, we mapped exposure to acute lethal risks and chronic sublethal fitness costs under past, present, and future climates. For inactive birds in shaded microsites, the risks of lethal dehydration and hyperthermia will remain low during the 21st century. In contrast, exposure to conditions associated with chronic, sublethal costs related to progressive body mass loss, reduced nestling growth rates, or increased breeding failure will expand dramatically. For example, by the 2080s the region will experience 10–20 consecutive days per year on which Southern Pied Babblers (Turdoides bicolor) will lose ∼4% of body mass per day, conditions under which this species’ persistence will be extremely unlikely. Similarly, exposure to air temperature maxima associated with delayed fledging, reduced fledgling size, and breeding failure will increase several-fold in Southern Yellow-billed Hornbills (Tockus leucomelas) and Southern Fiscals (Lanius collaris). Our analysis reveals that sublethal costs of chronic heat exposure are likely to drive large declines in avian diversity in the southern African arid zone by the end of the century.

Funder

National Research Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference65 articles.

1. W. R. Dawson , K. Schmidt-Nielsen , “Terrestrial animals in dry heat: desert birds” in Handbook of Physiology: Adaptation to the Environment, Dill DB , Ed. (American Physiological Society, Washington, DC, 1964), pp. 481–492.

2. Avian Biology Avian Biology, Vol. II D. S. Farner J. R. King

3. Collapse of a desert bird community over the past century driven by climate change

4. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves

5. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3