Inferring community assembly processes from functional seed trait variation along temperature gradient

Author:

Sergey RosbakhORCID,Loïc ChalmandrierORCID,Shyam PhartyalORCID,Peter PoschlodORCID

Abstract

AbstractAssembly of plant communities has long been scrutinized through the lens of trait-based ecology. Studies generally analyze functional traits related to the vegetative growth, survival and resource acquisition and thus ignore how ecological processes may affect plants at other stages of their lifecycle, particularly when seeds disperse, persist in soil and germinate.Here, we analyzed an extensive data set of 16 traits for 167 species measured in-situ in 36 grasslands located along an elevational gradient and compared the impact of abiotic filtering, biotic interactions and dispersal on traits reflecting different trait categories: plant vegetative growth, germination, dispersal, and seed morphology. For each community, we quantified community weighted mean (CWM) and functional diversity (FD) for all traits and established their relationships to mean annual temperature.The seed traits were weakly correlated to vegetative traits and thus constituted independent axes of plant phenotypical variation that were affected differently by the ecological processes considered. Abiotic filtering impacted mostly the vegetative traits and to a lesser extent on seed germination and morphological traits. Increasing low-temperature stress towards colder sites selected for short-stature, slow-growing and frost-tolerant species that produce small quantity of smaller seeds with higher degree of dormancy, high temperature requirements for germination and comparatively low germination speed.Biotic interactions, specifically competition in the lowlands and facilitation in uplands, also filtered certain functional traits in the study communities. The benign climate in lowlands promoted plant with competitive strategies including fast growth and resource acquisition (vegetative growth traits) and early and fast germination (germination traits), whereas the effects of facilitation on the vegetative and germination traits were cancelled out by the strong abiotic filtering.The changes in the main dispersal vector from zoochory to anemochory along the gradient strongly affected the dispersal and the seed morphological trait structure of the communities. Specifically, stronger vertical turbulence and moderate warm-upwinds combined with low grazing intensity selected for light and non-round shaped seeds with lower terminal velocity and endozoochorous potential.Synthesis. We clearly demonstrate that, in addition to vegetation traits, seed traits can substantially contribute to functional structuring of plant communities along environmental gradients. Thus, the, hard’ seed traits related to germination and dispersal are critical to detect multiple, complex community assembly rules. Consequently, such traits should be included in core lists of plant traits and, when applicable, be incorporated into analysis of community assembly.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. Seed dispersal by ungulates as an ecological filter: A trait□based meta□analysis;In: Oikos,2015

2. Baskin, Carol C. ; Baskin Jerry M. (2014): Seeds. Second Edition: Elsevier.

3. A classification system for seed dormancy;In: Seed science research,2004

4. Bello Francesco de ; Carmona Carlos P. ; Dias André T.C. ; Götzenberger, Lars ; Moretti, Marco ; Berg Matty P. (2021): Handbook of trait-based ecology: from theory to R tools: Cambridge University Press.

5. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3