Alpine plant communities differ in their seed germination requirements along a snowmelt gradient in the Caucasus

Author:

Rosbakh SergeyORCID,Fernández-Pascual Eduardo,Mondoni Andrea,Onipchenko Vladimir

Abstract

AbstractMesoscale heterogeneity of alpine landscapes generates snowmelt gradients resulting in a distinct vegetation zonation from almost snow-free fellfields to long-lasting snowbeds. Although the vegetative trait variation along such gradients has been intensively studied, little is known about whether and how seed germination is adapted to the variable snowpack duration. Here, we compare the seed germination niches of 18 characteristic plant species occurring in four distinct plant communities (alpine lichen heath—Festuca varia grassland—Geranium-Hedysarum meadow—snowbed) along an alpine snowmelt gradient in the North Caucasus (Russia). In a fully factorial experiment, we tested seed germination responses to temperature (10/2, 14/6, 18/10, 22/14, 26/18 and 30/22 °C) and water potential (0, − 0.2, − 0.4, − 0.6 and − 0.8 MPa) gradients, reflecting the full spectrum of seedling establishment conditions in the study system. Community-specific germination niches were identified by generalised mixed model with Bayesian estimation. Our study revealed that the species from the four focal communities significantly differed in their temperature requirements for germination, whereas soil moisture was found to be a limiting factor for seedling establishment along the entire gradient. The snowbed germination was constrained to comparatively high temperatures above 10 °C, whereas seed germination in alpine lichen heaths occurred under a wide range of experimental conditions. The seed germination patterns of species from Festuca varia grasslands and Geranium-Hedysarum meadows reflected their intermediate position along the snowmelt gradient. We conclude that seed germination niche is affected by the environmental filtering along the snowmelt gradient thus departing from the general alpine germination syndrome.

Funder

BayHost

National Science Foundation

Russian Science Foundation

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3