Attenuated transcriptional response to pro-inflammatory cytokines in schizophrenia hiPSC-derived neural progenitor cells

Author:

Bhat Anjali,Irizar Haritz,Raval Pooja,Duarte Rodrigo R.R.,Polit Lucia Dutan,Powell Timothy,Michael Deans P.J.,Shum Carol,Nagy Roland,McAlonan Grainne,Iyegbe Conrad O.,Price JackORCID,Bramon ElviraORCID,Bhattacharyya SagnikORCID,Vernon Anthony C.ORCID,Srivastava Deepak P.ORCID

Abstract

AbstractMaternal immune activation (MIA) during prenatal development is an environmental risk factor for psychiatric disorders including schizophrenia (SZ). This link is particularly well established in the case of schizophrenia. Converging lines of evidence from human and animal model studies have suggested that elevated cytokine levels in the maternal and fetal compartments are an important indication of the mechanisms driving this association. However, there is variability in susceptibility to the psychiatric risk conferred by MIA, likely influenced by genetic factors. How MIA interacts with a genetic profile susceptible to SZ is challenging to test in animal models. To address this gap, we examined whether differential gene expression responses occur in forebrain-lineage neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSC) generated from three individuals with a diagnosis of schizophrenia and three healthy controls. Following acute (24 hour) treatment with either interferon-gamma (IFNγ; 25 ng/μl) or interleukin (IL)-1β (10 ng/μl), we identified, by RNA sequencing, 3380 differentially expressed genes (DEGs) in the IFNγ-treated control lines (compared to untreated controls), and 1980 DEGs in IFNγ-treated SZ lines (compared to untreated SZ lines). Of these, 359 genes responded differently to IFNγ treatment in SZ relative to control lines, which were enriched for genes differentially expressed in adult SZ cases and in pathways related to the regulation of antigen processing, neuronal post-synaptic density, and the presynapse. There were no differentially expressed genes in the IL-1β-treatment conditions after Benjamini-Hochberg correction. Gene set enrichment analysis however showed that IL-1β impacts immune function and neuronal differentiation. Collectively, our data suggest that a) SZ NPCs show an attenuated transcriptional response to IFNγ treatment compared to control NPCs; b) IL-1β may be less relevant to NPC cultures than IFNγ and c) the genes differentially regulated in schizophrenia lines are primarily mitochondrial, loss-of-function, pre- and post-synaptic genes. Our findings particularly highlight early synaptic development as a key target for future research into the mechanisms of association between maternal immune activation and schizophrenia risk.HighlightsThere is a significant transcriptional response to IFNγ treatment in human induced cortical neural progenitor cells (NPCs)Differential expression implicates mitochondrial complex genes in this IFNγ-dependent response, which are underexpressed in response to treatment in schizophrenia (SZ) NPCs.SZ NPCs do not upregulate pre- and post-synaptic genes in response to IFNγ as much as control NPCsIL-1β may be less relevant to NPC cultures than IFNγ due to low IL1 receptor expression in NPCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3