Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution

Author:

Panibe Jerome P.,Wang Long,Lee Yi-Chen,Wang Chang-Sheng,Li Wen-Hsiung

Abstract

AbstractBackgroundTaichung Native 1 (TN1) is the first semidwarf rice cultivar that initiated the Green Revolution. As TN1 is a direct descendant of the Dee-geo-woo-gen cultivar, the source of the sd1 semidwarf gene, the sd1 gene can be defined through TN1. Also, TN1 is susceptible to the blast disease and is described as being drought-tolerant. However, genes related to these characteristics of TN1 are unknown. Our aim was to identify and characterize TN1 genes related to these traits.ResultsAligning the sd1 of TN1 to Nipponbare sd1, we found a 382-bp deletion including a frameshift mutation. Sanger sequencing validated this deleted region in sd1, and we proposed a model of the sd1 gene that corrects errors in the literature. We also predicted the blast disease resistant (R) genes of TN1. Orthologues of the R genes in Tetep, a well-known resistant cultivar that is commonly used as a donor for breeding new blast resistant cultivars, were then sought in TN1, and if they were present, we looked for mutations. The absence of Pi54, a well-known R gene, in TN1 partially explains why TN1 is more susceptible to blast than Tetep. We also scanned the TN1 genome using the PosiGene software and identified 11 genes deemed to have undergone positive selection. Some of them are associated with drought-resistance and stress response.ConclusionsWe have redefined the deletion of the sd1 gene in TN1, a direct descendant of the Dee-geo-woo-gen cultivar, and have corrected some literature errors. Moreover, we have identified blast resistant genes and positively selected genes, including genes that characterize TN1’s blast susceptibility and abiotic stress response. These new findings increase the potential of using TN1 to breed new rice cultivars.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3