The oscillation of mitotic kinase governs cell cycle latches

Author:

Novak BelaORCID,Tyson John JORCID

Abstract

SummaryIn order to transmit a eukaryotic cell’s genome accurately from mother cell to daughter cells, it is essential that the basic events of the cell division cycle (DNA synthesis and mitosis) occur once and only once per cycle, i.e., that a cell progresses irreversibly from G1 to S to G2 to M and back to G1. Irreversible progression through the cell cycle is assured by a sequence of ‘latching’ molecular switches, based on molecular interactions among cyclin-dependent kinases and their auxiliary partners. Positive feedback loops (++ or −−) create bistable switches with latching properties, and negative feedback loops drive progression from one stage to the next. In budding yeast (Saccharomyces cerevisiae) these events are coordinated by double-negative feedback loops between Clb-dependent kinases (Clb1-6) and their antagonists (APC:Cdh1 and Sic1). If the coordinating signal is compromised, either by deletion of Clb1-5 proteins or expression of non-degradable Clb2, then irreversibility is lost and yeast cells exhibit multiple rounds of DNA replication or mitotic exit events (Cdc14 endocycles). Using mathematical modelling of a stripped-down control network, we show how endocycles arise because the switches fail to latch, and the gates swing back and forth by the action of the negative feedback loops.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. At the heart of the budding yeast cell cycle

2. Morgan, D.O. (2007). The Cell Cycle: Principles of Control., (London: New Science Press).

3. Checkpoints in the cell cycle from a modeler’s perspective;Prog Cell Cycle Res,1995

4. Model scenarios for evolution of the eukaryotic cell cycle

5. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3