Model scenarios for evolution of the eukaryotic cell cycle

Author:

Novak B.1,Csikasz-Nagy A.1,Gyorffy B.1,Nasmyth K.2,Tyson J. J.3

Affiliation:

1. Department of Agricultural Chemical Technology, Technical University of Budapest, Gellert ter 4, Budapest 1521, Hungary ()

2. Institute of Molecular Pathology, Dr Bohr Gasse 7, Vienna 1030, Austria ()

3. Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA ()

Abstract

Progress through the division cycle of present day eukaryotic cells is controlled by a complex network consisting of (i) cyclin–dependent kinases (CDKs) and their associated cyclins, (ii) kinases and phosphatases that regulate CDK activity, and (iii) stoichiometric inhibitors that sequester cyclin–CDK dimers. Presumably regulation of cell division in the earliest ancestors of eukaryotes was a considerably simpler affair. Nasmyth (1995) recently proposed a mechanism for control of a putative, primordial, eukaryotic cell cycle, based on antagonistic interactions between a cyclin–CDK and the anaphase promoting complex (APC) that labels the cyclin subunit for proteolysis. We recast this idea in mathematical form and show that the model exhibits hysteretic behaviour between alternative steady states: a G1–like state (APC on, CDK activity low, DNA unreplicated and replication complexes assembled) and an S/M–like state (APC off, CDK activity high, DNA replicated and replication complexes disassembled). In our model, the transition from G1 to S/M (‘Start’) is driven by cell growth, and the reverse transition (‘Finish’) is driven by completion of DNA synthesis and proper alignment of chromosomes on the metaphase plate. This simple and effective mechanism for coupling growth and division and for accurately copying and partitioning a genome consisting of numerous chromosomes, each with multiple origins of replication, could represent the core of the eukaryotic cell cycle. Furthermore, we show how other controls could be added to this core and speculate on the reasons why stoichiometric inhibitors and CDK inhibitory phosphorylation might have been appended to the primitive alternation between cyclin accumulation and degradation.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3