Comparing human and model-based forecasts of COVID-19 in Germany and Poland

Author:

Bosse Nikos I.ORCID,Abbott SamORCID,Bracher JohannesORCID,Hain Habakuk,Quilty Billy J.ORCID,Jit MarkORCID,van Leeuwen EdwinORCID,Cori AnneORCID,Funk SebastianORCID,

Abstract

1AbstractForecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Abbott, S. , Hellewell, J. , Hickson, J. , Munday, J. , Gostic, K. , Ellis, P. , Sherratt, K. , Gibbs, H. , Thompson, R. , Meakin, S. , Bosse, N. I. , Mee, P. , & Funk, S. (2020). EpiNow2: Estimate real-time case counts and time-varying epidemiological parameters. -, -(-), –. https://doi.org/10.5281/zenodo.3957489

2. Abbott, S. , Sherratt, K. , Bevan, J. , Gibbs, H. , Hellewell, J. , Munday, J. , Barks, P. , Campbell, P. , Finger, F. , & Funk, S. (2020). Covidregionaldata: Subnational data for the covid-19 outbreak. -, -(-), –. https://doi.org/10.5281/zenodo.3957539

3. Ärzteblatt, D. Ä. G. , Redaktion Deutsches . (2020, November 3). SARS-CoV-2-Diagnostik: RKI passt Testempfehlungen an. Deutsches Ärzteblatt. https://www.aerzteblatt.de/nachrichten/118001/SARS-CoV-2-Diagnostik-RKI-passt-Testempfehlungen-an

4. Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls;Management Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3