The effects of protein crowders on small molecule drug diffusion

Author:

Dey Debabrata,Nunes-Alves Ariane,Wade Rebecca C,Schreiber Gideon

Abstract

AbstractCrowded environments affect the pharmacokinetics of drug molecules. Here, we investigate how three macromolecular protein crowders, bovine serum albumin, hen egg-white lysozyme and myoglobin, influence the translational diffusion rates and interactions of four low molecular-weight drugs, fluorescein, doxorubicin, glycogen synthase kinase-3 inhibitor SB216763 and quinacrine. Using Fluorescence Recovery After Photo-bleaching in Line mode (Line FRAP), Brownian dynamics simulations and molecular docking, we find that the diffusive behavior of the small molecules is highly affected by self-aggregation, interactions with the proteins, and surface adhesion. Fluorescein diffusion is decreased by protein crowders due to their interactions. On the other hand, for doxorubicin, the presence of protein crowders increases diffusion by reducing surface interactions. SB216763 shows a third scenario, where BSA, but not myoglobin or lysozyme, reduces self-aggregation, resulting in faster diffusion. Quinacrine was the only small molecule whose diffusion was not affected by the presence of protein crowders. The mechanistic insights gained here into the effects of interactions of small molecules with proteins and surfaces on the translational diffusion of small molecules can assist in optimizing the design of compounds for higher mobility and lower occlusion in complex macromolecular environments.Significance statementThe activity of small molecules is directly related to their active concentration. This, in turn, relates to their molar concentration and their activity coefficient. Any deviations from ideal behavior affects the small molecule activity. This is particularly important for drugs, where we seek to optimize their molar activity. Here, we follow the diffusional activity of four small molecule drugs in various solutions, with and without protein crowders. The study, which involves experimental measurements and theoretical simulations, shows that 3 of the 4 drugs do not diffuse normally, either due to aggregation, protein binding or surface adhesion. We show the mechanisms driving the abnormal diffusion, and how it can be reduced. Lessons learned from this study can be implemented into drug design.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3