Nucleolar targeting in an early-branching eukaryote suggests a general physicochemical mechanism for ribosome protein sorting

Author:

Jeilani MiladORCID,Billington Karen,Sunter Jack DanielORCID,Dean SamuelORCID,Wheeler Richard JohnORCID

Abstract

AbstractThe eukaryotic cell targets proteins to the organelles in which they function, both membrane-bound (like the nucleus) and non-membrane-bound (like the nucleolus). Nucleolar targeting relies on positively charged localisation signals, and has received rejuvenated interest since the widespread recognition of liquid-liquid phase separation (LLPS) as a mechanism contributing to nucleolus formation. Here, we exploit a new genome-wide analysis of protein localisation in an early-branching eukaryote, Trypanosoma brucei, to analyse general nucleolar protein properties. T. brucei nucleolar proteins have similar properties to those in common model eukaryotes, specifically basic amino acids. Using protein truncations and addition of candidate targeting sequences to proteins, we show both homopolymer runs and distributed basic amino acids give nucleolar partition, further aided by a nuclear localisation signal (NLS). These findings are consistent with phase separation models of nucleolar formation and protein physical properties being a major contributing mechanism for eukaryotic nucleolar targeting, conserved from the last eukaryotic common ancestor. Importantly, cytoplasmic ribosome proteins in comparison to mitochondrial ribosome proteins followed the same pattern – pointing to adaptation of physicochemical properties to assist segregation.Summary StatementWe show protein targeting to the nucleolus is mediated by positive charge, likely across eukaryotes, and contributes to sorting of mitochondrial from cytoplasmic ribosome proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3