Abstract
AbstractThe early stages of the virus-cell interaction have long evaded observation by existing microscopy methods due to the rapid diffusion of virions in the extracellular space and the large 3D cellular structures involved. Here we present an active-feedback single-virus tracking method with simultaneous volumetric imaging of the live cell environment to address this knowledge gap to present unprecedented detail to the extracellular phase of the infectious cycle. We report previously unobserved phenomena in the early stages of the virus-cell interaction, including skimming contact events at the millisecond timescale, orders of magnitude change in diffusion coefficient upon binding, and cylindrical and linear diffusion modes along filopodia. Finally, we demonstrate how this new method can move single-virus tracking from simple monolayer culture towards more tissue-like conditions by tracking single virions in tightly packed epithelial cells. This multi-resolution method presents new opportunities for capturing fast, 3D processes in biological systems.One-Sentence SummaryActive-feedback 3D single-virus tracking enables an unprecedented look at the early stages of virus-cell interactions.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献