Auxin-driven ecophysiological diversification of leaves in domesticated tomato

Author:

Moreira Juliene d. R.,Rosa Bruno L.,Lira Bruno S.,Lima Joni E.,Souza Ludmila N.,Otoni Wagner C.,Figueira Antonio,Freschi Luciano,Sakamoto Tetsu,Peres Lázaro E. P.ORCID,Rossi Magdalena,Zsögön AgustinORCID

Abstract

SummaryThe study of crop diversification has focussed mainly on the genetic changes underlying traits favoured by humans. However, the passage from natural habitats to agronomic settings probably operated changes beyond those comprising the classical domestication syndrome. A deeper understanding of these traits and their genetic signature would be valuable to inform conventional crop breeding and de novo domestication of crop wild relatives. Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalise the sub-stomatal cavity whereas homobaric leaves do not; BSE development is known to be controlled by the OBSCURAVENOSA (OBV) locus and the obv mutant lacks BSEs whereas leaves carrying the wild type allele have BSEs. Here we identify the OBV gene and the causative mutation, a non-synonymous amino acid change. This mutation exists as a rare balanced polymorphism in the natural range of wild tomatoes, but has increased in frequency in domesticated tomatoes suggesting that the latter diversified into heterobaric and homobaric leaf types. The mutation disrupts a C2H2 zinc finger motif in the OBV protein, resulting in the absence of BSEs in leaves and here we show that this and other pleiotropic effects, including changes in leaf insertion angle, leaf margin serration, minor vein density and fruit shape, are controlled by OBV via changes in auxin signalling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR (ARF4) also results in defective BSE development, revealing an additional component of a novel genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selections.One sentence summaryDistribution of heterobaric and homobaric leaves is controlled by natural variation in an auxin-related transcription factor

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3