Cohort Identification Using Semantic Web Technologies: Triplestores as Engines for Complex Computable Phenotyping

Author:

Pfaff Emily R.ORCID,Bradford RobertORCID,Clark Marshall,Balhoff James P.ORCID,Wang Rujin,Preisser John S.,Walters KellieORCID,Nielsen Matthew E.

Abstract

ABSTRACTBackgroundComputable phenotypes are increasingly important tools for patient cohort identification. As part of a study of risk of chronic opioid use after surgery, we used a Resource Description Framework (RDF) triplestore as our computable phenotyping platform, hypothesizing that the unique affordances of triplestores may aid in making complex computable phenotypes more interoperable and reproducible than traditional relational database queries.To identify and model risk for new chronic opioid users post-surgery, we loaded several heterogeneous data sources into a Blazegraph triplestore: (1) electronic health record data; (2) claims data; (3) American Community Survey data; and (4) Centers for Disease Control Social Vulnerability Index, opioid prescription rate, and drug poisoning rate data. We then ran a series of queries to execute each of the rules in our “new chronic opioid user” phenotype definition to ultimately arrive at our qualifying cohort.ResultsOf the 4,163 patients in the denominator, our computable phenotype identified 248 patients as new chronic opioid users after their index surgical procedure. After validation against charts, 228 of the 248 were revealed to be true positive cases, giving our phenotype a PPV of 0.92.ConclusionWe successfully used the triplestore to execute the new chronic opioid user phenotype logic, and in doing so noted some advantages of the triplestore in terms of schemalessness, interoperability, and reproducibility. Future work will use the triplestore to create the planned risk model and leverage the additional links with ontologies, and ontological reasoning.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3