Abstract
AbstractMitochondria and peroxisomes are both dynamic signaling organelles that constantly undergo fission. While mitochondrial fission is known to coordinate cellular metabolism, proliferation, and apoptosis, the physiological relevance of peroxisome dynamics and the implications for cell fate are not fully understood. DRP1 (dynamin-related protein 1) is an essential GTPase that executes both mitochondrial and peroxisomal fission. Patients with de novo heterozygous missense mutations in the gene that encodes DRP1, DNM1L (Dynamin 1 Like), present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1). EMPF1 is a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we used human-derived fibroblasts from patients with mutations in DRP1 who present with EMPF1. As expected, patient cells display elongated mitochondrial morphology and lack of fission. Patient cells display a lower coupling efficiency of the electron transport chain, increased proton leak, and upregulation of glycolysis. In addition to these metabolic abnormalities, mitochondrial hyperfusion results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential, both of which are tightly linked to the changes in metabolism. Peroxisome structure is also severely elongated in patient cells and results in a potential functional compensation of fatty acid oxidation. Understanding the mechanism by which DRP1 mutations cause these metabolic changes will give insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献