Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes

Author:

Grel Hubert1ORCID,Woznica Damian1ORCID,Ratajczak Katarzyna1ORCID,Kalwarczyk Ewelina1,Anchimowicz Julia2,Switlik Weronika2,Olejnik Piotr1,Zielonka Piotr1,Stobiecka Magdalena1ORCID,Jakiela Slawomir1ORCID

Affiliation:

1. Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

2. Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they’re not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.

Funder

National Science Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3