Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis

Author:

Li Yingshu,Liu Yongjie,Yang Hang,Zhang Ting,Naruse KiyoshiORCID,Tu QiangORCID

Abstract

Medaka (Oryzias latipes) has become an important vertebrate model widely used in genetics, developmental biology, environmental sciences, and many other fields. A high-quality genome sequence and a variety of genetic tools are available for this model organism. However, existing genome annotation is still rudimentary, as it was mainly based on computational prediction and short-read RNA-seq data. Here we report a dynamic transcriptome landscape of medaka embryogenesis profiled by long-read RNA-seq, short-read RNA-seq, and ATAC-seq. By integrating these data sets, we constructed a much-improved gene model set including about 17,000 novel isoforms and identified 1600 transcription factors, 1100 long noncoding RNAs, and 150,000 potential cis-regulatory elements as well. Time-series data sets provided another dimension of information. With the expression dynamics of genes and accessibility dynamics of cis-regulatory elements, we investigated isoform switching, as well as regulatory logic between accessible elements and genes, during embryogenesis. We built a user-friendly medaka omics data portal to present these data sets. This resource provides the first comprehensive omics data sets of medaka embryogenesis. Ultimately, we term these three assays as the minimum ENCODE toolbox and propose the use of it as the initial and essential profiling genomic assays for model organisms that have limited data available. This work will be of great value for the research community using medaka as the model organism and many others as well.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

National Institutes of Natural Sciences

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3