A standardised differential privacy framework for epidemiological modelling with mobile phone data

Author:

Savi Merveille KoissiORCID,Yadav Akash,Zhang Wanrong,Vembar Navin,Schroeder Andrew,Balsari Satchit,Buckee Caroline O.,Vadhan Salil,Kishore NishantORCID

Abstract

AbstractDuring the COVID-19 pandemic, the use of mobile phone data for monitoring human mobility patterns has become increasingly common, both to study the impact of travel restrictions on population movement and epidemiological modelling. Despite the importance of these data, the use of location information to guide public policy can raise issues of privacy and ethical use. Studies have shown that simple aggregation does not protect the privacy of an individual, and there are no universal standards for aggregation that guarantee anonymity. Newer methods, such as differential privacy, can provide statistically verifiable protection against identifiability but have been largely untested as inputs for compartment models used in infectious disease epidemiology. Our study examines the application of differential privacy as an anonymisation tool in epidemiological models, studying the impact of adding quantifiable statistical noise to mobile phone-based location data on the bias of ten common epidemiological metrics. We find that many epidemiological metrics are preserved and remain close to their non-private values when the true noise state is less than 20, in a count transition matrix, which corresponds to a privacy-less parameter∈ = 0.05per release. We show that differential privacy offers a robust approach to preserving individual privacy in mobility data while providing useful population-level insights for public health. Importantly, we have built a modular software pipeline to facilitate the replication and expansion of our framework.Author SummaryHuman mobility data has been used broadly in epidemiological population models to better understand the transmission dynamics of an epidemic, predict its future trajectory, and evaluate potential interventions. The availability and use of these data inherently raises the question of how we can balance individual privacy and the statistical utility of these data. Unfortunately, there are few existing frameworks that allow us to quantify this trade-off. Here, we have developed a framework to implement a differential privacy layer on top of human mobility data which can guarantee a minimum level of privacy protection and evaluate their effects on the statistical utility of model outputs. We show that this set of models and their outputs are resilient to high levels of privacy-preserving noise and suggest a standard privacy threshold with an epsilon of 0.05. Finally, we provide a reproducible framework for public health researchers and data providers to evaluate varying levels of privacy-preserving noise in human mobility data inputs, models, and epidemiological outputs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3