Valence-partitioned learning signals drive choice behavior and phenomenal subjective experience in humans

Author:

Sands L. Paul,Jiang Angela,Jones Rachel E.,Trattner Jonathan D.,Kishida Kenneth T.

Abstract

SUMMARYHow the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specific learning signals associated with ‘what it is like’ to be rewarded or punished. Our hypothesized model maintains a partition between appetitive and aversive information while generating independent and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning (VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate a network of regions that process appetitive and aversive information that converge on the ventral striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating mechanisms that may drive conscious experience.HighlightsTD-Reinforcement Learning (RL) theory interprets punishments relative to rewards.Environmentally, appetitive and aversive events are statistically independent.Valence-partitioned RL (VPRL) processes reward and punishment independently.We show VPRL better accounts for human choice behavior and associated BOLD activity.VPRL signals predict dynamic changes in human subjective experience.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3