Approach to Machine Learning for Extraction of Real-World Data Variables from Electronic Health Records

Author:

Adamson BlytheORCID,Waskom MichaelORCID,Blarre AurianeORCID,Kelly JonathanORCID,Krismer KonstantinORCID,Nemeth SheilaORCID,Gippetti JamesORCID,Ritten JohnORCID,Harrison KatherineORCID,Ho GeorgeORCID,Linzmayer RobinORCID,Bansal TarunORCID,Wilkinson SamuelORCID,Amster GuyORCID,Estola EvanORCID,Benedum Corey M.ORCID,Fidyk ErinORCID,Estevez MelissaORCID,Shapiro WillORCID,Cohen Aaron B.ORCID

Abstract

ABSTRACTBackgroundAs artificial intelligence (AI) continues to advance with breakthroughs in natural language processing (NLP) and machine learning (ML), such as the development of models like OpenAI’s ChatGPT, new opportunities are emerging for efficient curation of electronic health records (EHR) into real-world data (RWD) for evidence generation in oncology. Our objective is to describe the research and development of industry methods to promote transparency and explainability.MethodsWe applied NLP with ML techniques to train, validate, and test the extraction of information from unstructured documents (eg, clinician notes, radiology reports, lab reports, etc.) to output a set of structured variables required for RWD analysis. This research used a nationwide electronic health record (EHR)-derived database. Models were selected based on performance. Variables curated with an approach using ML extraction are those where the value is determined solely based on an ML model (ie, not confirmed by abstraction), which identifies key information from visit notes and documents. These models do not predict future events or infer missing information.ResultsWe developed an approach using NLP and ML for extraction of clinically meaningful information from unstructured EHR documents and found high performance of output variables compared with variables curated by manually abstracted data. These extraction methods resulted in research-ready variables including initial cancer diagnosis with date, advanced/metastatic diagnosis with date, disease stage, histology, smoking status, surgery status with date, biomarker test results with dates, and oral treatments with dates.ConclusionsNLP and ML enable the extraction of retrospective clinical data in EHR with speed and scalability to help researchers learn from the experience of every person with cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3