Bioenergetic costs and the evolution of noise regulation by microRNAs

Author:

Ilker EfeORCID,Hinczewski MichaelORCID

Abstract

Noise control, together with other regulatory functions facilitated by microRNAs (miRNAs), is believed to have played important roles in the evolution of multicellular eukaryotic organisms. miRNAs can dampen protein fluctuations via enhanced degradation of mRNAs, but this requires compensation by increased mRNA transcription to maintain the same expression levels. The overall mechanism is metabolically expensive, leading to questions about how it might have evolved in the first place. We develop a stochastic model of miRNA noise regulation, coupled with a detailed analysis of the associated metabolic costs. Additionally we calculate binding free energies for a range of miRNA seeds, the short sequences which govern target recognition. We argue that natural selection may have fine-tuned the Michaelis-Menten constantKMdescribing miRNA-mRNA affinity, and show supporting evidence from analysis of experimental data.KMis constrained by seed length, and optimal noise control (minimum protein variance at a given energy cost) is achievable for seeds of 6-7 nucleotides in length, the most commonly observed types. Moreover, at optimality the degree of noise reduction approaches the theoretical bound set by the Wiener-Kolmogorov linear filter. The results illustrate how selective pressure toward energy efficiency has potentially shaped a crucial regulatory pathway in eukaryotes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3