A Framework for Systematically Evaluating the Representations Learned by A Deep Learning Classifier from Raw Multi-Channel Electroencephalogram Data

Author:

Ellis Charles A.ORCID,Sattiraju Abhinav,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

ABSTRACTThe application of deep learning methods to raw electroencephalogram (EEG) data is growing increasingly common. While these methods offer the possibility of improved performance relative to other approaches applied to manually engineered features, they also present the problem of reduced explainability. As such, a number of studies have sought to provide explainability methods uniquely adapted to the domain of deep learning-based raw EEG classification. In this study, we present a taxonomy of those methods, identifying existing approaches that provide insight into spatial, spectral, and temporal features. We then present a novel framework consisting of a series of explainability approaches for insight into classifiers trained on raw EEG data. Our framework provides spatial, spectral, and temporal explanations similar to existing approaches. However, it also, to the best of our knowledge, proposes the first explainability approaches for insight into spatial and spatio-spectral interactions in EEG. This is particularly important given the frequent use and well-characterized importance of EEG connectivity measures for neurological and neuropsychiatric disorder analysis. We demonstrate our proposed framework within the context of automated major depressive disorder (MDD) diagnosis, training a high performing one-dimensional convolutional neural network with a robust cross-validation approach on a publicly available dataset. We identify interactions between frontal and central electrodes and other electrodes and identify differences in frontal δ, θ, β, and γlowbetween healthy controls and individuals with MDD. Our study represents a significant step forward for the field of deep learning-based raw EEG classification, providing new capabilities in interaction explainability and providing direction for future innovations through our proposed taxonomy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3