Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures

Author:

Ellis Charles A.ORCID,Lapera Sancho MartinaORCID,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

AbstractDeep learning methods are increasingly being applied to raw electro-encephalogram (EEG) data. However, if these models are to be used in clinical or research contexts, methods to explain them must be developed, and if these models are to be used in research contexts, methods for combining explanations across large numbers of models must be developed to counteract the inherent randomness of existing training approaches. Model visualization-based explainability methods for EEG involve structuring a model architecture such that its extracted features can be characterized and have the potential to offer highly useful insights into the patterns that they uncover. Nevertheless, model visualization-based explainability methods have been underexplored within the context of multichannel EEG, and methods to combine their explanations across folds have not yet been developed. In this study, we present two novel convolutional neural network-based architectures and apply them for automated major depressive disorder diagnosis. Our models obtain slightly lower classification performance than a baseline architecture. However, across 50 training folds, they find that individuals with MDD exhibit higher β power, potentially higher δ power, and higher brain-wide correlation that is most strongly represented within the right hemisphere. This study provides multiple key insights into MDD and represents a significant step forward for the domain of explainable deep learning applied to raw EEG. We hope that it will inspire future efforts that will eventually enable the development of explainable EEG deep learning models that can contribute both to clinical care and novel medical research discoveries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3