Abstract
AbstractAsian rice is one of the world’s most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate. Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa ofOryza sativaandOryza rufipogon. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/japonicato ancient Xian/indicaor its wild ancestor, including almost all well-known domestication genes and a 4.5-Mb centromere-spanning block, supporting a single domestication event in rice. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice. This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献