Abstract
AbstractRibosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, yet their distribution in actively translating human cells remains elusive. Here, we optimized a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with a local resolution of up to 2.5 angstroms. These structures revealed the distribution of functional states of the elongation cycle, a Z tRNA binding site and the dynamics of ribosome expansion segments. In addition, we visualized structures of Homoharringtonine, a drug for chronic myeloid leukemia treatment, within the active site of the ribosome and found that its binding reshaped the landscape of translation. Overall, our work demonstrates that structural dynamics and drug effects can be assessed at near-atomic detail within human cells.One-Sentence SummarySnapshots of ribosome dynamics at near-atomic resolution within native and drug-treated human cells are revealed.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献