Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts

Author:

Garieri Marco,Stamoulis Georgios,Falconnet Emilie,Ribaux Pascale,Borel ChristelleORCID,Santoni FedericoORCID,Antonarakis Stylianos E.ORCID

Abstract

ABSTRACTIn eutherian mammals, X chromosome inactivation (XCI) provides a dosage compensation mechanism where in each female cell one of the two X chromosomes is randomly silenced. However, some genes on the inactive X chromosome and outside the pseudoautosomal regions escape from XCI and are expressed from both alleles (escapees). Given the relevance of the escapees in biology and medicine, we investigated XCI at an unprecedented single-cell resolution. We combined deep single-cell RNA sequencing with whole genome sequencing to examine allelic specific expression (ASE) in 935 primary fibroblast and 48 lymphoblastoid single cells from five female individuals. In this framework we integrated an original method to identify and exclude doublets of cells. We have identified 55 genes as escapees including 5 novel escapee genes. Moreover, we observed that all genes exhibit a variable propensity to escape XCI in each cell and cell type, and that each cell displays a distinct expression profile of the escapee genes. We devised a novel metric, the Inactivation Score (IS), defined as the mean of the allelic expression profiles of the escapees per cell, and discovered a heterogeneous and continuous degree of cellular XCI with extremes represented by “inactive” cells, i.e., exclusively expressing the escaping genes from the active X chromosome, and “escaping” cells, expressing the escapees from both alleles. Intriguingly we found that XIST is the major genetic determinant of IS, and that XIST expression, higher in G0 phase, is negatively correlated with the expression of escapees, inactivated and pseudoautosomal genes. In this study we use single-cell allele specific expression to identify novel escapees in different tissues and provide evidence of an unexpected cellular heterogeneity of XCI driven by a possible regulatory activity of XIST.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3